A tutorial for multi-phase flow simulation: Conservative Allen-Cahn phase-field
fluid model of multi-phase fluid mixing in a tilted channel

This tutorial aims to introduce a simple and practical numerical framework for
multi-phase incompressible and immiscible fluid simulation. The physical problem
raised in this tutorial is N-component (N>=3) fluid mixing in a tilted channel. The
mathematical model for capturing multi-phase fluid interfaces is the N-component
conservative Allen-Cahn (CAC) equation, the fluid dynamics is governed by the
incompressible Navier-Stokes equations.

The multi-component CAC equation is solved with a temporally first-order accurate
semi-implicit operator splitting method. The incompressible Navier-Stokes equations
with variable density and viscosity ratios are solved with a temporally first-order
accurate pressure projection method. The governing equations are discretized in
space with standard finite difference method. We describe the mathematical models
and numerical implementations in details. The C (for computation) and Matlab (for
post-treatment) codes of a four-component case are provided.

*It is worth noting that the model and algorithm described in this tutorial can be
modified to simulate various multi-phase incompressible and immiscible fluids. The
interested readers can modify this basic code according to their research
requirements.

The numerical results are posted here:




Governing equations:

We consider the N-component incompressible, immiscible fluids in a two-dimensional inclined

channel. In the gravitational field, we set the heavier fluids initially on the top of lighter fluids, with

fluids 1 and N being the heaviest and lightest fluids, respectively. The angle between the channel

and the horizontal direction is §. L and H are the length and width of the channel, respectively.

x and y denote the horizontal and vertical coordinates, respectively. The schematic diagram of the

initial fluid distribution is shown in Fig. (1).

Let ¢ = (e1, 9, - ,cn) be a vector-valued phase field function in which each order parameter

¢ denotes mole fraction of the kth component in the mixture. Clearly, the total mole fractions
satisfy the quality ¢; + o +--- + ey = 1. To study the multiphase fluid flow properties, we couple

the incompressible NS equations and the multi-component CAC equations as follows:
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The boundary condition for velocity field is w = 0, and linear boundary conditions are imposed
for order parameter ¢; for k=1,2--- N.

The specific symbol definitions are as follows: w is the fluid velocity, p is the pressure, g =
(—gsint, —gcos@) is the gravity term and g is the gravitational acceleration. py and 7 are the
density and viscosity for the kth incompressible fluid, rc‘spc’(‘t.ivcly plc) is the variable density and
n(e) is the variable viscosity, where they are defined as p(e ZL 1 prek and (e EA:I M Che»
respectively. F(eg) = 0.25¢2(1 — ¢)? is the Helmholtz free-energy density for ¢, ¢ > 0 is the
gradient energy coefficient, f(cp) = F'(¢r) = en(er — 0.5)(cr — 1), ale(x,t)) = zs;lf(c;c). To
make the AC equation conserve the total mass for each ¢, we introduce G(e(wx,t))5(f) [18].
G(ce(ax. 1)) Bk (t) is a space-time dependent Lagrange multiplier, where G(c(x,t)) = Zk 1 \/—)
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We can proof that the total mass of each ¢ is conserved:
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To obtain the dimensionless form of the Eqgs.(1)-(3), the characteristic quantities of length (L.),

velocity (U.), density (p.), viscosity (7.) are defined as L. = H, U, = \/gH, p. = pn, e = NN,

respectively. Then the dimensionless variables are as follows:
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By substituting these variables into Eqgs.(1)-(3) and drop the primes, we have
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The dimensionless parameters are the Reynolds number, Re = p.U.L./., the Froude number,
Fr =U./+/gL., and the Péclet number, Pe = U.L./ ..
By using the operator splitting approach, Eq. (6) is split into the following three simpler

problems:
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Numerical method:

Let the computational domain } = [a, b] x [¢, d] be partitioned into a uniform mesh with mesh
spacing fr. The center is located at (z;,y;) = (a+ (i —0.5)h,c+ (j —0.5)h), for i = 1,2,--- | N,,j =
1,2,---, N, where N, N, represent the numbers of cells in the x— and y— directions, respectively.
Then the mesh vertices are denoted as (w541 /2, ¥j+172) = (a+ih, c+jh). Let T be the total time and
N, be the total number of time steps, then the uniform time step is defined to be At = T/N,. We
use Harlow and Welch's staggered marker-and-cell mesh [25] to define the velocities w1 /2,505 j+1/2
at (Tip1/2.%;) and (xi,y;41/2), respectively, and the pressure at the center of the grid (x;,y;). Let
pi; and ¢y ;. be the approximations of p(x;, y;, nAt) and cx(zi, y;, nAt), respectively. Figure (?7)
shows the schematic illustration of MAC grid.

Ui—1/2 541 Uig1/2,541
Vij+1/2 Vit1,j+1/2
vom Hia
Ui-1/2,5 ije Pij Uiy1/2,5
Vi j—1/2 Vig1,j-1/2

Fig 2. MAC grid
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At the beginning of each time step, given 4" ,¢"and p", we want to find u c and p
The main procedures are as follows:

Step 1. Initialize u” to be the divergence-free velocity field and e”. Note that we only need to
initialize ¢y, ¢z, -+, ex—1 since Yoo cp = 1.

Step 2. Without the pressure gradient term, we solve the intermediate velocity field, w. The

discretization form of the equation is
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We compute uz, - and ay - with the second-order ENO method [26]. We first set inter-

mediate variables ki, ko, di, ds, then we have
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Step 3. Solve p"*!. With the application of
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we get a Poisson equation for the pressure at (n + 1) time step:
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The boundary conditions for pressure are
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where n is the unit normal vector to J€).

The periodic boundary condition to vertical boundaries and no slip boundary condition to the

top and bottom domain are imposed, which leads to
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To get the unique solution of Poisson equation, we need to update the pressure [27, 28| as
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We use a multigrid method[29] to solve Eq. (14) with boundary conditions(17).

Step 4. Solve the divergence-free velocities u™*! and v"*1!.
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Step 5. Solve the multi-component CAC equations.
We only need to solve 21,81 @+ since SN ¢? = 1.First a semi-implicit method is
applied to solve Equation (7),for k=1,2,--- | N — 1:
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Next, we use the method of separation of variables to solve Eq. (8) and the numerical solution

follows as
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Substituting the calculated d*‘P[ into Eq. (21), we can calculate ¢} o fork=1,2,--- ,N—1.
Then we get ¢y ' =1 — 27\':11 dirE,

These complete the calculations in one time step.

Note: Although the surface tension is absent in present simulation, we still provide the

multi-component surface tension formulation is provided. For some details of multi-component
continuous surface tension model, please refer to

Comput. Methods Appl. Mech. Engrg. 198 (2009) 3105-3112

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

A generalized continuous surface tension force formulation for phase-field
models for multi-component immiscible fluid flows

Junseok Kim *

Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

The multi-component surface tension is defined as:
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* It is worth noting that the surface tension is necessary if you want to simulate droplets.
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The implementations of linear multigrid are as follows:

2.2. Linear multigrid V-cycle algorithm. In this section we describe the algorithm of the
linear multigrid method for solving the discrete system in Eq. (2.7). In order to explain clearly
the steps taken during a single V-cycle, we focus on a numerical solution on a 8 x 8 mesh. We
define discrete domains, €23, €25, €24, and £, where

O, = {(zxs = (i — 0.5)hg, yr; = (5 — 0.5)hs)|1 < 4,5 < 251 and by, = 23~%h}.

£, is coarser than €2, by a factor of 2. The multigrid solution of the discrete Eq. (2.7) makes
use of a hierarchy of meshes ({23, 2, (2, and §2) created by successively coarsening the
original mesh, €23 as shown in Fig. 2. A pointwise Gauss—Seidel relaxation scheme is used as
the smoother in the multigrid method. The algorithm of the multigrid method for solving Eq.
(2.7) is as follows. We rewrite the Eq. (2.7) by

Ly(p1) = f3,j on Qs 2.17)
where
3 1 “ T
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Given the numbers, v, and 15, of pre- and post- smoothing relaxation sweeps, an iteration
step for the multigrid method using the V-cycle is formally written as follows [26]. That is,
starting an initial condition p}, we want to find p§ for n = 1,2,---. Given p}, we want to
find the p} "1 solution that satisfies Eq. (2.7). At the very beginning of the multigrid cycle
the solution from the previous time step is used to provide an initial guess for the multigrid

procedure. First, let pg"'l’n = ph.

@)y (8% 8) h (b) 2 (4 x 4) 2h (©) D (2 x 2) 4h

(d)

FIGURE 2. (a), (b), and (c) are a sequence of coarse grids starting with h =
L/N,. (d) is a composition of grids, {25, €24, and 2.

Multigrid cycle

+1,m+1 9 +1,
P = MGeyele(k,pp ™, Ly, fr,v1,10).
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That is, p; and p, are the approximations of p”*‘l before and after an MGecycle.
Now, define the MGcycle.

Step 1) Presmoothing

prtt™ — SMOOTH™ (i '™, Li, fr),

means performing v; smoothing steps with the initial approximation p;’ L

_n+1l,m

, source terms [,

and a SMOOTH relaxation operator to get the approximation p, . Here, we derive the

smoothing operator in two dimensions.
Now we derive a Gauss—Seidel relaxation operator. First, we rewrite Eq. (2.17) as
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Next, we replace p}:ﬁl’glﬂ in Eq. (2.18) with p};j} g‘m if (@ < i) or (o = i and 3 < j), otherwise
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Therefore, in a multigrid cycle, one smooth relaxation operator step consists of solving Eq.
(2.19) given above for 1 <14 < 23N and 1 < =< Qk"gNy.

Step 2) Coarse grid correction

e Compute the defect: d* = fr — Li(p; Es

e Restrict the defect and p}": dm =1 k= l(f};”

The restriction operator I;: 1 maps k-level functions to (k — 1)-level functions.

di-1(zi,y5) = I 'di(2i, y5) = [dk(j"g_,_ Y1) iz, _1,9,,1)
+dk("i+%:?}j--5) dk(-'ri.}.é:?)'j+-%)]-

e Compute an approximate solution ;. ' % "™ of the coarse grid equation on 1, i.e.,

Lpa (™) =d (2.20)

If £ = 1, we use a direct or fast iteration solver for Eq. (220). If £ > 1, we solve Eq.
(2.20) approximately by performing k-grid cycles using the zero grid function as an initial
approximation:

f:::m = MGeycle(k — 1,0, L1, d}* 1, v1, 12).
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e Interpolate the correction: ¢, . Here, the coarse values are simply

transferred to the four nearby fine grid points, i.e., qk(i“ Y;) = k_ 1Te—1(2:,9;) = qu—1(z o1
* 2
Yipl ) for the i and j odd-numbered integers.
2

e Compute the corrected approximation on (2,
}:1 after coc —ﬁf”m +(hi‘lllm.

Step 3) Postsmoothing: p:' tmtl _ sprooTHY (p?’ after CGC, L, fi).
This completes the description of a MGceycle. Then, for unique solution, we redefine the
pressure using Eq. (2.9) as follows:

Ny
n+1,m+1 n+1,m~i-1 n } 1,m+ 1
Pss =p.. E E (2.21)
w L 41\'_7-4?\‘{[}

=1 j=1




n+lm+1l 1

One MGcycle step stops if the consequence error ||p p"t1m|| . is smaller than a

given tolerance, where
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